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XIV 

ome good things seem to go on forever: friendship and updating this book. It is diffi­
cult to believe that the first edition manuscript was typewritten, with real cutting and 
pasting. The publisher required a paper manuscript with numbered pages-that was 

almost our downfall. We could write a book on multivariate statistics, but we couldn't get the 
same number of pages (about 1200, double-spaced) twice in a row. SPSS was in release 9.0, 
and the other program we demonstrated was BMDP. There were a mere 11 chapters, of which 
6 of them were describing techniques. Multilevel and structural equation modeling were not 
yet ready for prime time. Logistic regression and survival analysis were not yet popular. 

Material new to this edition includes a redo of all SAS examples, with a pretty new output 
format and replacement of interactive analyses that are no longer available. We've also re-run 
the IBM SPSS examples to show the new output format. We've tried to update the references in 
all chapters, including only classic citations if they date prior to 2000. New work on relative im­
portance has been incorporated in multiple regression, canonical correlation, and logistic regres­
sion analysis complete with demonstrations. Multiple imputation procedures for dealing with 
missing data have been updated, and we've added a new time-series example, taking advantage 
of an IBM SPSS expert modeler that replaces previous tea-leaf reading aspects of the analysis. 

Our goals in writing the book remain the same as in all previous editions to present com­
plex statistical procedures in a way that is maximally useful and accessible to researchers who 
are not necessarily statisticians. We strive to be short on theory but long on conceptual under­
standing. The statistical packages have become increasingly easy to use, making it all the more 
critical to make sure that they are applied with a good understanding of what they can and 
cannot do. But above all else what does it all mean? 

We have not changed the basic format underlying all of the technique chapters, now 14 of 
them. We start with an overview of the technique, followed by the types of research questions 
the techniques are designed to answer. We then provide the cautionary tale what you need to 
worry about and how to deal with those worries. Then come the fundamental equations underly­
ing the technique, which some readers truly enjoy working through (we know because they help­
fully point out any errors and/ or inconsistencies they find); but other readers discover they can 
skim ( or skip) the section without any loss to their ability to conduct meaningful analysis of their 
research. The fundamental equations are in the context of a small, made-up, usually silly data set 
for which computer analyses are provided usually IBM SPSS and SAS. Next, we delve into is­
sues surrounding the technique (such as different types of the analysis, follow-up procedures to 
the main analysis, and effect size, if it is not amply covered elsewhere). Finally, we provide one or 
two full-bore analyses of an actual real-life data set together with a Results section appropriate for 
a journal. Data sets for these examples are available at www.pearsonhighered.com in IBM SPSS, 
SAS, and ASCII formats. We end each technique chapter with a comparison of features available 
in IBM SPSS, SAS, SYSTAT and sometimes other specialized programs. SYSTAT is a statistical 
package that we reluctantly had to drop a few editions ago for lack of space. 

We apologize in advance for the heft of the book; it is not our intention to line the cof­
fers of chiropractors, physical therapists, acupuncturists, and the like, but there's really just so 
much to say. As to our friendship, it's still going strong despite living in different cities. Art has 
taken the place of creating belly dance costumes for both of us, but we remain silly in outlook, 
although serious in our analysis of research. 

The lineup of people to thank grows with each edition, far too extensive to list: students, 
reviewers, editors, and readers who send us corrections and point out areas of confusion. As 
always, we take full responsibility for remaining errors and lack of clarity. 

Barbara G. Tabachnick 

Linda S. Fidell 
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Learning Objectives 

1.1 Explain the importance of multivariate techniques in analyzing research 
data 

1.2 Describe the basic statistical concepts used in multivariate analysis 

1.3 Explain how multivariate analysis is used to determine relationships 
between variables 

1.4 Summarize the factors to be considered for the selection of variables in 
multivariate analysis 

1.5 Summarize the importance of statistical power in research study design 

1.6 Describe the types of data sets used in multivariate statistics 

1.7 Outline the organization of the text 

1.1 Multivariate Statistics: Why? 
Multivariate statistics are increasingly popular techniques used for analyzing complicated data 
sets. They provide analysis when there are many independent variables (IVs) and/ or many 
dependent variables (DVs), all correlated with one another to varying degrees. Because of the 
difficulty in addressing complicated research questions with univariate analyses and because 
of the availability of highly developed software for performing multivariate analyses, multi­
variate statistics have become widely used. Indeed, a standard univariate statistics course only 
begins to prepare a student to read research literature or a researcher to produce it. 

But how much harder are the multivariate techniques? Compared with the multivariate 
methods, univariate statistical methods are so straightforward and neatly structured that it is 
hard to believe they once took so much effort to master. Yet many researchers apply and cor­
rectly interpret results of intricate analysis of variance before the grand structure is apparent 
to them. The same can be true of multivariate statistical methods. Although we are delighted 
if you gain insights into the full multivariate general linear model,1 we have accomplished our 
goal if you feel comfortable selecting and setting up multivariate analyses and interpreting the 
computer output. 

Multivariate methods are more complex than univariate by at least an order of magnitude. 
However, for the most part, the greater complexity requires few conceptual leaps. Familiar 
concepts such as sampling distributions and homogeneity of variance simply become more 
elaborate. 

Multivariate models have not gained popularity by accident-or even by sinister 
design. Their growing popularity parallels the greater complexity of contemporary research. 

1 Chapter 17 attempts to foster such insights. 

1 



2 Chapter 1 

In psychology, for example, we are less and less enamored of the simple, clean, laboratory 
study, in which pliant, first-year college students each provide us with a single behavioral mea­
sure on cue. 

1.1.1 The Domain of Multivariate Statistics: 
Numbers of IVs and DVs 

Multivariate statistical methods are an extension of univariate and bivariate statistics. 
Multivariate statistics are the complete or general case, whereas univariate and bivariate statis­
tics are special cases of the multivariate model. If your design has many variables, multivariate 
techniques often let you perform a single analysis instead of a series of univariate or bivariate 
analyses. 

Variables are roughly dichotomized into two major types-independent and dependent. 
Independent variables (IVs) are the differing conditions (treatment vs. placebo) to which you 
expose your research participants or the characteristics (tall or short) that the participants them­
selves bring into the research situation. IVs are usually considered predictor variables because 
they predict the DVs-the response or outcome variables. Note that IV and DV are defined 
within a research context; a DV in one research setting may be an IV in another. 

Additional terms for IVs and DVs are predictor-criterion, stimulus-response, task­
performance, or simply input-output. We use IV and DV throughout this book to identify vari­
ables that belong on one side of an equation or the other, without causal implication. That is, 
the terms are used for convenience rather than to indicate that one of the variables caused or 
determined the size of the other. 

The term univariate statistics refers to analyses in which there is a single DV. There may be, 
however, more than one rv. For example, the amount of social behavior of graduate students (the 
DV) is studied as a function of course load ( one IV) and type of training in social skills to which 
students are exposed (another IV). Analysis of variance is a commonly used univariate statistic. 

Bivariate statistics frequently refers to analysis of two variables, where neither is an 
experimental IV and the desire is simply to study the relationship between the variables 
(e.g., the relationship between income and amount of education). Bivariate statistics, of course, 
can be applied in an experimental setting, but usually they are not. Prototypical examples of 
bivariate statistics are the Pearson product-moment correlation coefficient and chi-square anal­
ysis. (Chapter 3 reviews univariate and bivariate statistics.) 

With multivariate statistics, you simultaneously analyze multiple dependent and multiple 
independent variables. This capability is important in both nonexperimental (correlational or 
survey) and experimental research. 

1.1.2 Experimental and Nonexperimental Research 
A critical distinction between experimental and nonexperimental research is whether the 
researcher manipulates the levels of the IVs. In an experiment, the researcher has control over 
the levels (or conditions) of at least one IV to which a participant is exposed by determining 
what the levels are, how they are implemented, and how and when cases are assigned and 
exposed to them. Further, the experimenter randomly assigns cases to levels of the IV and con­
trols all other influential factors by holding them constant, counterbalancing, or randomizing 
their influence. Scores on the DV are expected to be the same, within random variation, except 
for the influence of the IV (Shadish, Cook, and Campbell, 2002). If there are systematic differ­
ences in the DV associated with levels of the IV, these differences are attributed to the IV. 

For example, if groups of undergraduates are randomly assigned to the same material but dif­
ferent types of teaching techniques, and afterward some groups of undergraduates perform better 
than others, the difference in performance is said, with some degree of confidence, to be caused by 
the difference in teaching technique. In this type of research, the terms independent and dependent 
have obvious meaning: the value of the DV depends on the manipulated level of the IV. The IV is 
manipulated by the experimenter and the score on the DV depends on the level of the IV. 



In nonexperimental (correlational or survey) research, the levels of the IV(s) are not ma­
nipulated by the researcher. The researcher can define the IV, but has no control over the 
assignment of cases to levels of it. For example, groups of people may be categorized into geo­
graphic area of residence (Northeast, Midwest, etc.), but only the definition of the variable is 
under researcher control. Except for the military or prison, place of residence is rarely subject 
to manipulation by a researcher. Nevertheless, a naturally occurring difference like this is often 
considered an IV and is used to predict some other nonexperimental (dependent) variable such 
as income. In this type of research, the distinction between IVs and DV s is usually arbitrary and 
many researchers prefer to call IVs predictors and DV s criterion variables. 

In nonexperimental research, it is very difficult to attribute causality to an IV. If there is a 
systematic difference in a DV associated with levels of an IV, the two variables are said (with 
some degree of confidence) to be related, but the cause of the relationship is unclear. For exam­
ple, income as a DV might be related to geographic area, but no causal association is implied. 

Nonexperimental research takes many forms, but a common example is the survey. 
Typically, many people are surveyed, and each respondent provides answers to many ques­
tions, producing a large number of variables. These variables are usually interrelated in highly 
complex ways, but univariate and bivariate statistics are not sensitive to this complexity. 
Bivariate correlations between all pairs of variables, for example, could not reveal that the 20 to 
25 variables measured really represent only two or three ''supervariables." 

If a research goal is to distinguish among subgroups in a sample (e.g., between Catholics 
and Protestants) on the basis of a variety of attitudinal variables, we could use several univari­
ate t tests (or analyses of variance) to examine group differences on each variable separately. 
But if the variables are related, which is highly likely, the results of many t tests are misleading 
and statistically suspect. 

With the use of multivariate statistical techniques, complex interrelationships among vari­
ables are revealed and assessed in statistical inference. Further, it is possible to keep the overall 
Type I error rate at, say, 5°/o, no matter how many variables are tested. 

Although most multivariate techniques were developed for use in nonexperimental re­
search, they are also useful in experimental research, in which there may be multiple IVs and 
multiple DV s. With multiple IVs, the research is usually designed so that the IVs are indepen­
dent of each other and a straightforward correction for numerous statistical tests is available 
(see Chapter 3). With multiple DVs, a problem of inflated error rate arises if each DV is tested 
separately. Further, at least some of the DV s are likely to be correlated with each other, so sepa­
rate tests of each DV reanalyze some of the same variance. Therefore, multivariate tests are used. 

Experimental research designs with multiple DVs were unusual at one time. Now, how­
ever, with attempts to make experimental designs more realistic, and with the availability of 
computer programs, experiments often have several DV s. It is dangerous to run an experiment 
with only one DV and risk missing the impact of the IV because the most sensitive DV is not 
measured. Multivariate statistics help the experimenter design more efficient and more realistic 
experiments by allowing measurement of multiple DV s without violation of acceptable levels 
of Type I error. 

One of the few considerations not relevant to choice of statistical technique is whether the 
data are experimental or correlational. The statistical methods ''work'' whether the researcher 
manipulated the levels of the IV or not. But attribution of causality to results is crucially af­
fected by the experimental-nonexperimental distinction. 

1.1.3 Computers and Multivariate Statistics 
One answer to the question ''Why multivariate statistics?'' is that the techniques are now 
accessible by computer. Only the most dedicated number cruncher would consider doing 
real-life-sized problems in multivariate statistics without a computer. Fortunately, excellent 
multivariate programs are available in a number of computer packages. 

Two packages are demonstrated in this book. Examples are based on programs in IBM 
SPSS and SAS. 

Introduction 3 



4 Chapter 1 

If you have access to both packages, you are indeed fortunate. Programs within the pack­
ages do not completely overlap, and some problems are better handled through one package 
than the other. For example, doing several versions of the same basic analysis on the same set 
of data is particularly easy with IBM SPSS, whereas SAS has the most extensive capabilities for 
saving derived scores from data screening or from intermediate analyses. 

Chapters 5 through 17 (the chapters that cover the specialized multivariate techniques) 
offer explanations and illustrations of a variety of programs2 within each package and a com­
parison of the features of the programs. We hope that once you understand the techniques, you 
will be able to generalize to virtually any multivariate program. 

Recent versions of the programs are available in Windows, with menus that implement 
most of the techniques illustrated in this book. All of the techniques may be implemented 
through syntax, and syntax itself is generated through menus. Then you may add or change 
syntax as desired for your analysis. For example, you may ''paste'' menu choices into a 
syntax window in IBM SPSS, edit the resulting text, and then run the program. Also, syntax 
generated by IBM SPSS menus is saved in the ''journal'' file (statistics.jnl), which may also 
be accessed and copied into a syntax window. Syntax generated by SAS menus is recorded 
in a '' log'' file. The contents may then be copied to an interactive window, edited, and run. 
Do not overlook the help files in these programs. Indeed, SAS and IBM SPSS now provide 
the entire set of user manuals online, often with more current information than is available 
in printed manuals. 

Our IBM SPSS demonstrations in this book are based on syntax generated through menus 
whenever feasible. We would love to show you the sequence of menu choices, but space does 
not permit. And, for the sake of parsimony, we have edited program output to illustrate the 
material that we feel is the most important for interpretation. 

With commercial computer packages, you need to know which version of the package you 
are using. Programs are continually being changed, and not all changes are immediately imple­
mented at each facility. Therefore, many versions of the various programs are simultaneously 
in use at different institutions; even at one institution, more than one version of a package is 
sometimes available. 

Program updates are often corrections of errors discovered in earlier versions. Sometimes, 
a new version will change the output format but not its information. Occasionally, though, 
there are major revisions in one or more programs or a new program is added to the package. 
Sometimes defaults change with updates, so that the output looks different although syntax is 
the same. Check to find out which version of each package you are using. Then, if you are using 
a printed manual, be sure that the manual you are using is consistent with the version in use at 
your facility. Also check updates for error correction in previous releases that may be relevant 
to some of your previous runs. 

Except where noted, this book reviews Windows versions of IBM SPSS Version 24 and SAS 
Version 9.4. Information on availability and versions of software, macros, books, and the like 
changes almost daily. We recommend the Internet as a source of ''keeping up.'' 

1.1.4 Garbage In, Roses Out? 
The trick in multivariate statistics is not in computation. This is easily done as discussed above. 
The trick is to select reliable and valid measurements, choose the appropriate program, use it 
correctly, and know how to interpret the output. Output from commercial computer programs, 
with their beautifully formatted tables, graphs, and matrices, can make garbage look like roses. 
Throughout this book, we try to suggest clues that reveal when the true message in the output 
more closely resembles the fertilizer than the flowers. 

Second, when you use multivariate statistics, you rarely get as close to the raw data as 
you do when you apply univariate statistics to a relatively few cases. Errors and anomalies 

2 We have retained descriptions of features of SYSTAT (Version 13) in these sections, despite the removal of 
detailed demonstrations of that program in this edition. 



in the data that would be obvious if the data were processed by hand are less easy to spot 
when processing is entirely by computer. But the computer packages have programs to graph 
and describe your data in the simplest univariate terms and to display bivariate relationships 
among your variables. As discussed in Chapter 4, these programs provide preliminary analy­
ses that are absolutely necessary if the results of multivariate programs are to be believed. 

There are also certain costs associated with the benefits of using multivariate procedures. 
Benefits of increased flexibility in research design, for instance, are sometimes paralleled by 
increased ambiguity in interpretation of results. In addition, multivariate results can be quite 
sensitive to which analytic strategy is chosen (cf. Section 1.2.4) and do not always provide bet­
ter protection against statistical errors than their univariate counterparts. Add to this the fact 
that occasionally you still cannot get a firm statistical answer to your research questions, and 
you may wonder if the increase in complexity and difficulty is warranted. 

Frankly, we think it is. Slippery as some of the concepts and procedures are, these statistics 
provide insights into relationships among variables that may more closely resemble the com­
plexity of the ''real'' world. And sometimes you get at least partial answers to questions that 
could not be asked at all in the univariate framework. For a complete analysis, making sense of 
your data usually requires a judicious mix of multivariate and univariate statistics. 

The addition of multivariate statistical methods to your repertoire makes data analysis a 
lot more fun. If you liked univariate statistics, you will love multivariate statistics!3 

1.2 Some Useful Definitions 
In order to describe multivariate statistics easily, it is useful to review some common terms in 
research design and basic statistics. Distinctions were made between IVs and DV s and between 
experimental and nonexperimental research in preceding sections. Additional terms that are 
encountered repeatedly in the book but not necessarily related to each other are described in 
this section. 

1.2.1 Continuous, Discrete, and Dichotomous Data 
In applying statistical techniques of any sort, it is important to consider the type of measure­
ment and the nature of the correspondence between the numbers and the events that they 
represent. The distinction made here is among continuous, discrete, and dichotomous vari­
ables; you may prefer to substitute the terms interval or quantitative for continuous and nominal, 
categorical or qualitative for dichotomous and discrete. 

Continuous variables are measured on a scale that changes values smoothly rather than in 
steps. Continuous variables take on any values within the range of the scale, and the size of the 
number reflects the amount of the variable. Precision is limited by the measuring instrument, 
not by the nature of the scale itself. Some examples of continuous variables are time as mea­
sured on an old-fashioned analog clock face, annual income, age, temperature, distance, and 
grade point average (GPA). 

Discrete variables take on a finite and usually small number of values, and there is no 
smooth transition from one value or category to the next. Examples include time as displayed 
by a digital clock, continents, categories of religious affiliation, and type of community (rural 
or urban). 

Sometimes discrete variables are used in multivariate analyses as if continuous if there are 
numerous categories and the categories represent a quantitative attribute. For instance, a vari­
able that represents age categories (where, say, 1 stands for Oto 4 years, 2 stands for 5 to 9 years, 
3 stands for 10 to 14 years, and so on up through the normal age span) can be used because 
there are a lot of categories and the numbers designate a quantitative attribute (increasing age) . 
But the same numbers used to designate categories of religious affiliation are not in appropriate 

3 Don't even think about it. 
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form for analysis with many of the techniques4 because religions do not fall along a quantita­
tive continuum. 

Discrete variables composed of qualitatively different categories are sometimes analyzed 
after being changed into a number of dichotomous or two-level variables (e.g., Catholic vs. 
non-Catholic, Protestant vs. non-Protestant, Jewish vs. non-Jewish, and so on until the degrees 
of freedom are used). Recategorization of a discrete variable into a series of dichotomous ones is 
called dummy variable coding. The conversion of a discrete variable into a series of dichotomous 
ones is done to limit the relationship between the dichotomous variables and others to linear 
relationships. A discrete variable with more than two categories can have a relationship of any 
shape with another variable, and the relationship is changed arbitrarily if the assignment of 
numbers to categories is changed. Dichotomous variables, however, with only two points, can 
have only linear relationships with other variables; they are, therefore, appropriately analyzed 
by methods using correlation in which only linear relationships are analyzed. 

The distinction between continuous and discrete variables is not always clear. If you add 
enough digits to the digital clock, for instance, it becomes for all practical purposes a con­
tinuous measuring device, whereas time as measured by the analog device can also be read in 
discrete categories such as hours or half hours. In fact, any continuous measurement may be 
rendered discrete (or dichotomous) with some loss of information, by specifying cutoffs on the 
continuous scale. 

The property of variables that is crucial to the application of multivariate procedures is 
not the type of measurement so much as the shape of distribution, as discussed in Chapter 4 
and in discussions of tests of assumptions in Chapters 5 through 17. Non-normally distributed 
continuous variables and dichotomous variables with very uneven splits between the catego­
ries present problems to several of the multivariate analyses. This issue and its resolution are 
discussed at some length in Chapter 4. 

Another type of measurement that is used sometimes produces a rank order scale. This 
scale assigns a number to each case to indicate the case's position vis-a-vis other cases along 
some dimension. For instance, ranks are assigned to contestants (first place, second place, 
third place, etc.) to provide an indication of who is the best-but not by how much. A problem 
with rank order measures is that their distributions are rectangular (one frequency per num­
ber) instead of normal, unless tied ranks are permitted and they pile up in the middle of the 
distribution. 

In practice, we often treat variables as if they are continuous when the underlying scale 
is thought to be continuous, but the measured scale actually is rank order, the number of cat­
egories is large say, seven or more, and the data meet other assumptions of the analysis. For 
instance, the number of correct items on an objective test is technically not continuous because 
fractional values are not possible, but it is thought to measure some underlying continuous 
variable such as course mastery. Another example of a variable with ambiguous measure­
ment is one measured on a Likert-type scale, in which consumers rate their attitudes toward a 
product as ''strongly like," ''moderately like," ''mildly like," ''neither like nor dislike," ''mildly 
dislike," ''moderately dislike," or ''strongly dislike." As mentioned previously, even dichoto­
mous variables may be treated as if continuous under some conditions. Thus, we often use the 
term continuous, throughout the remainder of this book, whether the measured scale itself is 
continuous or the variable is to be treated as if continuous. We use the term discrete for vari­
ables with a few categories, whether the categories differ in type or quantity. 

1.2.2 Samples and Populations 
Samples are measured to make generalizations about populations. Ideally, samples are selected, 
usually by some random process, so that they represent the population of interest. In real life, 
however, populations are frequently best defined in terms of samples, rather than vice versa; 
the population is the group from which you were able to randomly sample. 

4 Some multivariate techniques (e.g., logistic regression, SEM) are appropriate for all types of variables. 



Sampling has somewhat different connotations in nonexperimental and experimental 
research. In nonexperimental research, you investigate relationships among variables in some 
predefined population. Typically, you take elaborate precautions to ensure that you have 
achieved a representative sample of that population; you define your population, and then do 
your best to randomly sample from it.5 

In experimental research, you attempt to create different populations by treating subgroups 
from an originally homogeneous group differently. The sampling objective here is to ensure 
that all cases come from the same population before you treat them differently. Random sam­
pling consists of randomly assigning cases to treatment groups (levels of the IV) to ensure that, 
before differential treatment, all subsamples come from the same population. Statistical tests 
provide evidence as to whether, after treatment, all samples still come from the same popula­
tion. Generalizations about treatment effectiveness are made to the type of individuals who 
participated in the experiment. 

1.2.3 Descriptive and Inferential Statistics 
Descriptive statistics describe samples of cases in terms of variables or combinations of 
variables. Inferential statistical techniques test hypotheses about differences in populations on 
the basis of measurements made on samples of cases. If statistically significant differences are 
found, descriptive statistics are then used to provide estimations of central tendency, and the 
like, in the population. Descriptive statistics used in this way are called parameter estimates. 

Use of inferential and descriptive statistics is rarely an either-or proposition. We are 
usually interested in both describing and making inferences about a data set. We describe the 
data, find statistically significant differences or relationships, and estimate population values 
for those findings. However, there are more restrictions on inference than there are on descrip­
tion. Many assumptions of multivariate statistical methods are necessary only for inference. If 
simple description of the sample is the major goal, many assumptions are relaxed, as discussed 
in Chapters 5 through 17. 

1.2.4 Orthogonality: Standard and Sequential Analyses 
Orthogonality is a perfect nonassociation between variables. If two variables are orthogonal, 
knowing the value of one variable gives no clue as to the value of the other; the correlation 
between them is zero. 

Orthogonality is often desirable in statistical applications. For instance, factorial designs for 
experiments are orthogonal when two or more IVs are completely crossed with equal sample 
sizes in each combination of levels. Except for use of a common error term, tests of hypotheses 
about main effects and interactions are independent of each other; the outcome of each test 
gives no hint as to the outcome of the others. In orthogonal experimental designs with random 
assignment of cases, manipulation of the levels of the IV, and good controls, changes in value of 
the DV can be unambiguously attributed to various main effects and interactions. 

Similarly, in multivariate analyses, there are advantages if sets of IVs or DV s are orthogonal. 
If all pairs of IVs in a set are orthogonal, each IV adds, in a simple fashion, to prediction of the 
DV. Consider income as a DV with education and occupational prestige as IVs. If education and 
occupational prestige are orthogonal, and if 35°/o of the variability in income may be predicted 
from education and a different 45°/o is predicted from occupational prestige, then 80°/o of the 
variance in income (the DV, Y) is predicted from education and occupational prestige together. 

Orthogonality can easily be illustrated in Venn diagrams, as shown in Figure 1.1. Venn 
diagrams represent shared variance ( or correlation) as overlapping areas between two ( or 
more) circles. The total variance for income is one circle. The section with horizontal stripes 
represents the part of income predictable from education (the first IV, X1), and the section with 

5 Strategies for random sampling are discu ssed in many sources, including Levy and Lemenshow (2009), Rea 
and Parker (1997), and de Vaus (2002). 
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y 

• Figure 1.1 Venn diagram for Y (income), X1 (education), and X2 (occupational prestige). 

vertical stripes represents the part predictable from occupational prestige (the second IV, X2); 

the circle for education overlaps the circle for income 35°/o and the circle for occupational pres­
tige overlaps 45°/o. Together, they account for 80°/o of the variability in income because educa­
tion and occupational prestige are orthogonal and do not themselves overlap. There are similar 
advantages if a set of DV s is orthogonal. The overall effect of an IV can be partitioned into ef­
fects on each DV in an additive fashion. 

Usually, however, the variables are correlated with each other (nonorthogonal). IVs in nonex­
perimental designs are often correlated naturally; in experimental designs, IVs become correlated 
when unequal numbers of cases are measured in different cells of the design. DV s are usually corre­
lated because individual differences among participants tend to be consistent over many attributes. 

When variables are correlated, they have shared or overlapping variance. In the example 
of Figure 1.2, education and occupational prestige correlate with each other. Although the inde­
pendent contribution made by education is still 35°/o and that by occupational prestige is 45°/o, 
their joint contribution to prediction of income is not 80°/o, but rather something smaller due to 
the overlapping area shown by the arrow in Figure 1.2(a). A major decision for the multivariate 
analyst is how to handle the variance that is predictable from more than one variable. Many 
multivariate techniques have at least two strategies for handling it, but some have more. 

In standard analysis, the overlapping variance contributes to the size of summary statistics 
of the overall relationship but is not assigned to either variable. Overlapping variance is dis­
regarded in assessing the contribution of each variable to the solution. Figure l.2(a) is a Venn 
diagram of a standard analysis in which overlapping variance is shown as overlapping areas 
in circles; the unique contributions of X 1 and X2 to prediction of Y are shown as horizontal and 
vertical areas, respectively, and the total relationship between Y and the combination of X 1 and 
X2 is those two areas plus the area with the arrow. If X1 is education and X2 is occupational 
prestige, then in standard analysis, X 1 is '' credited with'' the area marked by the horizontal 
lines and X2 by the area marked by vertical lines. Neither of the IVs is assigned the area desig­
nated with the arrow. When X1 and X2 substantially overlap each other, very little horizontal or 
vertical area may be left for either of them, despite the fact that they are both related to Y. They 
have essentially knocked each other out of the solution. 

y 

Area represents variance 
in relationship that contributes 
to solution but is assigned to 
neither X1 nor X2 

(a) Standard analysis 

y 

(b) Sequential analysis in which 
X1 is given priority over X2 

Figure 1.2 Standard (a) and sequential (b) analyses of the relationship between Y, X1, and 
X2 . Horizontal shading depicts variance assigned to X1. Vertical shading depicts variance 
assigned to X2. 



Sequential analyses differ, in that the researcher assigns priority for entry of variables into 
equations, and the first one to enter is assigned both unique variance and any overlapping vari­
ance it has with other variables. Lower-priority variables are then assigned on entry their unique 
and any remaining overlapping variance. Figure 1.2(b) shows a sequential analysis for the same 
case as Figure 1.2(a), where X1 (education) is given priority over X2 (occupational prestige). The 
total variance explained is the same as in Figure 1.2(a), but the relative contributions of X1 and 
X2 have changed; education now shows a stronger relationship with income than in the standard 
analysis, whereas the relation between occupational prestige and income remains the same. 

The choice of strategy for dealing with overlapping variance is not trivial. If variables are 
correlated, the overall relationship remains the same, but the apparent importance of variables 
to the solution changes depending on whether a standard or a sequential strategy is used. If the 
multivariate procedures have a reputation for umeliability, it is because solutions change, some­
times dramatically, when different strategies for entry of variables are chosen. However, the 
strategies also ask different questions of the data, and it is incumbent on the researcher to deter­
mine exactly which question to ask. We try to make the choices clear in the chapters that follow. 

1.3 Linear Combinations of Variables 
Multivariate analyses combine variables to do useful work, such as predict scores or predict 
group membership. The combination that is formed depends on the relationships among the 
variables and the goals of analysis, but in most cases, the combination is linear. A linear com­
bination is one in which each variable is assigned a weight (e.g., W1), and then the products 
of weights and the variable scores are summed to predict a score on a combined variable. In 
Equation 1.1, Y' (the predicted DV) is predicted by a linear combination of X1 and X2 (the IVs). 

(1.1) 

If, for example, Y' is predicted income, X1 is education, and X2 is occupational prestige, 
the best prediction of income is obtained by weighting education (X 1) by W1 and occupational 
prestige (X2) by W2 before summing. No other values of W1 and W2 produce as good a predic­
tion of income. 

Notice that Equation 1.1 includes neither X1 nor X2 raised to powers (exponents) nor a 
product of X1 and X2. This seems to severely restrict multivariate solutions until one realizes 
that X 1 could itself be a product of two different variables or a single variable raised to a power. 
For example, X1 might be education squared. A multivariate solution does not produce expo­
nents or cross-products of IVs to improve a solution, but the researcher can include Xs that 
are cross-products of IVs or are IVs raised to powers. Inclusion of variables raised to powers 
or cross-products of variables has both theoretical and practical implications for the solution. 
Berry (1993) provides a useful discussion of many of the issues. 

The size of the W values ( or some function of them) often reveals a great deal about the 
relationship between DVs and IVs. If, for instance, the W value for some IV is zero, the IV is not 
needed in the best DV-IV relationship. Or if some IV has a large W value, then the IV tends to 
be important to the relationship. Although complications (to be explained later) prevent inter­
pretation of the multivariate solution from the sizes of the W values alone, they are nonetheless 
important in most multivariate procedures. 

The combination of variables can be considered a supervariable, not directly measured 
but worthy of interpretation. The supervariable may represent an underlying dimension that 
predicts something or optimizes some relationship. Therefore, the attempt to understand the 
meaning of the combination of IVs is worthwhile in many multivariate analyses. 

In the search for the best weights to apply in combining variables, computers do not try out 
all possible sets of weights. Various algorithms have been developed to compute the weights. 
Most algorithms involve manipulation of a correlation matrix, a variance-covariance matrix, 
or a sum-of-squares and cross-products matrix. Section 1.6 describes these matrices in very 
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simple terms and shows their development from a very small data set. Appendix A describes 
some terms and manipulations appropriate to matrices. In the fourth sections of Chapters 5 
through 17, a small hypothetical sample of data is analyzed by hand to show how the weights 
are derived for each analysis. Though this information is useful for a basic understanding of 
multivariate statistics, it is not necessary for applying multivariate techniques fruitfully to your 
research questions and may, sadly, be skipped by those who are math averse. 

1.4 Number and Nature of Variables 
to Include 

Attention to the number of variables included in an analysis is important. A general rule is to get 
the best solution with the fewest variables. As more and more variables are included, the solution 
usually improves, but only slightly. Sometimes the improvement does not compensate for the 
cost in degrees of freedom of including more variables, so the power of the analyses diminishes. 

A second problem is overfitting. With overfitting, the solution is very good; so good, in fact, 
that it is unlikely to generalize to a population. Overfitting occurs when too many variables are 
included in an analysis relative to the sample size. With smaller samples, very few variables can be 
analyzed. Generally, a researcher should include only a limited number of uncorrelated variables 
in each analysis,6 fewer with smaller samples. We give guidelines for the number of variables that 
can be included relative to sample size in the third sections of Chapters 5 through 17. 

Additional considerations for inclusion of variables in a multivariate analysis include cost, 
availability, meaning, and theoretical relationships among the variables. Except in analysis 
of structure, one usually wants a small number of valid, cheaply obtained, easily available, 
uncorrelated variables that assess all the theoretically important dimensions of a research area. 
Another important consideration is reliability. How stable is the position of a given score in a 
distribution of scores when measured at different times or in different ways? Unreliable vari­
ables degrade an analysis, whereas reliable ones enhance it. A few reliable variables give a 
more meaningful solution than a large number of less reliable variables. Indeed, if variables are 
sufficiently unreliable, the entire solution may reflect only measurement error. Further consid­
erations for variable selection are mentioned as they apply to each analysis. 

1.5 Statistical Power 
A critical issue in designing any study is whether there is adequate power. Power, as you may recall, 
represents the probability that effects that actually exist have a chance of producing statistical signif­
icance in your eventual data analysis. For example, do you have a large enough sample size to show 
a significant relationship between GRE and GPA if the actual relationship is fairly large? What if the 
relationship is fairly small? Is your sample large enough to reveal significant effects of treatment on 
your DV(s)? Relationships among power and errors of inference are discussed in Chapter 3. 

Issues of power are best considered in the planning state of a study when the researcher 
determines the required sample size. The researcher estimates the size of the anticipated effect 
(e.g., an expected mean difference), the variability expected in assessment of the effect, the 
desired alpha level (ordinarily .05), and the desired power (often .80). These four estimates 
are required to determine the necessary sample size. Failure to consider power in the planning 
stage often results in failure to find a significant effect (and an unpublishable study). The inter­
ested reader may wish to consult Cohen (1988), Rossi (1990), Sedlmeier and Gigerenzer (1989), 
or Murphy, Myors, and Wolach (2014) for more detail. 

There is a great deal of software available to help you estimate the power available with 
various sample sizes for various statistical techniques, and to help you determine necessary 

6 The exceptions are analysis of structure, such as factor analysis, in which numerous correlated variables are 
measured. 



sample size given a desired level of power (e.g., an 80°/o probability of achieving a significant 
result if an effect exists) and expected sizes of relationships. One of these programs that esti­
mates power for several techniques is NCSS PASS (Hintze, 2017). Many other programs are 
reviewed (and sometimes available as shareware) on the Internet. Issues of power relevant to 
each of the statistical techniques are discussed in Chapters 5 through 17. 

1.6 Data Appropriate for Multivariate 
Statistics 

An appropriate data set for multivariate statistical methods consists of values on a number of vari­
ables for each of several participants or cases. For continuous variables, the values are scores on 
variables. For example, if the continuous variable is the GRE, the values for the various participants 
are scores such as 500, 420, and 650. For discrete variables, values are number codes for group mem­
bership or treatment. For example, if there are three teaching techniques, students who receive one 
technique are arbitrarily assigned a ''1," those receiving another technique are assigned a ''2''. 

1.6.1 The Data Matrix 
The data matrix is an organization of scores in which rows (lines) represent participants and 
columns represent variables. An example of a data matrix with six participants7 and four vari­
ables is given in Table 1.1. For example, X1 might be type of teaching technique, X2 score on the 
GRE, X3 GPA, and X4 gender, with women coded 1 and men coded 2. 

Data are entered into a data file with long-term storage accessible by computer in order to 
apply computer techniques to them. Each participant starts with a new row (line). Information 
identifying the participant is typically entered first, followed by the value of each variable for that 
participant. 

Scores for each variable are entered in the same order for each student. If there are more 
data for each case that can be accommodated on a single line, the data are continued on 
additional lines, but all of the data for each case are kept together. All of the computer package 
manuals provide information on setting up a data matrix. 

In this example, there are values for every variable for each student. This is not always 
the case with research in the real world. With large numbers of cases and variables, scores are 
frequently missing on some variables for some cases. For instance, respondents may refuse to 
answer some kinds of questions, or some students may be absent the day when a particular 
test is given, and so forth. This creates missing values in the data matrix. To deal with missing 
values, first build a data file in which some symbol is used to indicate that a value on a variable 
is missing in data for a case. The various programs have standard symbols, such as a dot(.), for 
this purpose. You can also use other symbols, but it is often just as convenient to use one of the 
default symbols. Once the data set is available, consult Chapter 4 for various options to deal 
with this messy (but often unavoidable) problem. 

Table 1.1 A Data Matrix of Hypothetical Scores 

Student X1 X2 X3 X4 

1 1 500 3 .20 1 

2 1 420 2.50 2 

3 2 650 3.90 1 

4 2 550 3 .50 2 

5 3 480 3 .30 

6 3 600 3.25 2 

7 Normally, of course, there are many more than six cases. 
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Table 1.2 Correlation Matrix for Part 
of Hypothetical Data for Table 1.1 

1.00 

.85 

- .13 

1.6.2 The Correlation Matrix 

.85 

1.00 

- .46 

- .13 

- .46 

1.00 

Most readers are familiar with R, a correlation matrix. R is a square, symmetrical matrix. Each row 
(and each column) represents a different variable, and the value at the intersection of each row and 
column is the correlation between the two variables. For instance, the value at the intersection of 
the second row, third column, is the correlation between the second and the third variables. The 
same correlation also appears at the intersection of the third row, second column. Thus, correlation 
matrices are said to be symmetrical about the main diagonal, which means they are mirror images 
of themselves above and below the diagonal from top left to bottom right. Hence, it is common 
practice to show only the bottom half or the top half of an R matrix. The entries in the main diago­
nal are often omitted as well, since they are all ones-correlations of variables with themselves.8 

Table 1.2 shows the correlation matrix for X2, X3, and X4 of Table 1.1. The value .85 is the 
correlation between X2 and X3 and it appears twice in the matrix (as do other values). Other 

correlations are as indicated in the table. 
Many programs allow the researcher a choice between analysis of a correlation matrix and 

analysis of a variance-covariance matrix. If the correlation matrix is analyzed, a unit-free result 
is produced. That is, the solution reflects the relationships among the variables but not in the 
metric in which they are measured. If the metric of the scores is somewhat arbitrary, analysis of 
R is appropriate. 

1.6.3 The Variance-Covariance Matrix 
If scores are measured along a meaningful scale, it is sometimes appropriate to analyze a 
variance-covariance matrix. A variance-covariance matrix,~' is also square and symmetrical, 
but the elements in the main diagonal are the variances of each variable, and the off-diagonal 
elements are covariances between pairs of different variables. 

Variances, as you recall, are averaged squared deviations of each score from the mean of 
the scores. Since the deviations are averaged, the number of scores included in computation of 
a variance is not relevant, but the metric in which the scores are measured is relevant. Scores 
measured in large numbers tend to have large numbers as variances, and scores measured in 
small numbers tend to have small variances. 

Covariances are averaged cross-products (product of the deviation between one variable 
and its mean and the deviation between a second variable and its mean). Covariances are simi­
lar to correlations except that they, like variances, retain information concerning the scales in 
which the variables are measured. The variance-covariance matrix for the continuous data in 
Table 1.1 appears in Table 1.3. 

Table 1.3 Variance-Covariance Matrix 
for Part of Hypothetical Data of Table 1.1 

7026.66 

32.80 

- 6.00 

32.80 

.21 

- .12 

8 Alternatively, other information such as standard deviations is inserted. 

- 6.00 

- .12 

.30 



1.6.4 The Sum-of-Squares and Cross-Products Matrix 
The matrix, S, is a precursor to the variance-covariance matrix in which deviations are not yet 
averaged. Thus, the size of the entries depends on the number of cases as well as on the metric 
in which the elements were measured. The sum-of-squares and cross-products matrix for X2, 

X3, and X4 in Table 1.1 appears in Table 1.4. 

The entry in the major diagonal of the matrix Sis the sum of squared deviations of scores 
from the mean for that variable, hence, 11 sum of squares," or SS. That is, for each variable, the 
value in the major diagonal is 

N 

SS(Xj) = L (Xij - Xj) 2 (1.2) 
i=l 

where i = 1,2, ... ,N 
N = the number of cases 
j = the variable identifier 

Xij = the score on variable j by case i 

Xj = the mean of all scores on the jth variable 

For example, for X4, the mean is 1.5. The sum of squared deviations around the mean and 
the diagonal value for the variable is 

6 

L (Xi4 - X4) 2 = (1 - 1.5)2 + (2 - 1.5)2 + (1 - 1.5)2 + (2 - 1.5)2 + (1 - 1.5)2 + (2 - 1.5)2 

i= l 

= 1.50 

The off-diagonal elements of the sum-of-squares and cross-products matrix are the cross­
products the sum of products (SP) of the variables. For each pair of variables, represented 
by row and column labels in Table 1.4, the entry is the sum of the product of the deviation 
of one variable around its mean times the deviation of the other variable around its mean. 

N 

SP(XjXk) = L (Xij - Xj)(Xik - Xk) 
i=l 

where j identifies the first variable, k identifies the second variable, and all other 
terms are as defined in Equation 1.1. (Note that if j = k, Equation 1.3 becomes 
identical to Equation 1.2.) 

For example, the cross-product term for variables X2 and X3 is 

N 

(1 .3) 

L (Xi2 - X2) (Xi3 - X3) = (500 - 533.33) (3.20 - 3.275) + ( 420 - 533.33) (2.50 - 3.275) 
i=l 

+ · · · + ( 600 - 533.33) (3.25 - 3.275) = 164.00 

Most computations start with Sand proceed to I. or R. The progression from a sum-of­
squares and cross-products matrix to a variance-covariance matrix is simple. 

1 
I. = s 

N- 1 

Table 1.4 Sum-of-Squares and Cross­
Products Matrix for Part of Hypothetical 
Data of Table 1.1 

35133.33 

164.00 

- 30.00 

164.00 

1.05 

- 0.58 

- 30.00 

- 0.58 

1.50 

(1.4) 
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The variance-covariance matrix is produced by dividing every element in the sum-of­
squares and cross-products matrix by N - 1, where N is the number of cases. 

The correlation matrix is derived from an S matrix by dividing each sum-of-squares by it­
self (to produce the ls in the main diagonal of R) and each cross-product of the S matrix by the 
square root of the product of the sum-of-squared deviations around the mean for each of the 
variables in the pair. That is, each cross-product is divided by 

Denominator(Xj Xk) = V'2'.(Xij - Xj)2'2'.(Xik - Xk)2 

where terms are defined as in Equation 1.3. 

(1.5) 

For some multivariate operations, it is not necessary to feed the data matrix to a computer 
program. Instead, an Sor an R matrix is entered, with each row (representing a variable) start­
ing a new line. Often, considerable computing time and expense are saved by entering one or 
the other of these matrices rather than raw data. 

1.6.5 Residuals 
Often a goal of analysis or test of its efficiency is its ability to reproduce the values of a DV or the 
correlation matrix of a set of variables. For example, we might want to predict scores on the GRE 
(X2) of Table 1.1 from knowledge of GPA (X3) and gender (X4). After applying the proper statis­
tical operations a multiple regression in this case a predicted GRE score for each student is 
computed by applying the proper weights for GPA and gender to the GPA, and gender scores 
for each student. But because we already obtained GRE scores for the sample of students, we 
are able to compare the predicted score with the obtained GRE score. The difference between the 
predicted and obtained values is known as the residual and is a measure of error of prediction. 

In most analyses, the residuals for the entire sample sum to zero. That is, sometimes the 
prediction is too large and sometimes it is too small, but the average of all the errors is zero. 
The squared value of the residuals, however, provides a measure of how good the prediction 
is. When the predictions are close to the obtained values, the squared errors are small. The way 
that the residuals are distributed is of further interest in evaluating the degree to which the data 
meet the assumptions of multivariate analyses, as discussed in Chapter 4 and elsewhere. 

1.7 Organization of the Book 
Chapter 2 gives a guide to the multivariate techniques that are covered in this book and places 
them in context with the more familiar univariate and bivariate statistics where possible. 
Chapter 2 includes a flow chart that organizes statistical techniques on the basis of the major 
research questions asked. Chapter 3 provides a brief review of univariate and bivariate 
statistical techniques for those who are interested. 

Chapter 4 deals with the assumptions and limitations of multivariate statistical methods. 
Assessment and violation of assumptions are discussed, along with alternatives for dealing with 
violations when they occur. The reader is guided back to Chapter 4 frequently in Chapters 5 
through 17. 

Chapters 5 through 17 cover specific multivariate techniques. They include descriptive, con­
ceptual sections as well as a guided tour through a real-world data set for which the analysis 
is appropriate. The tour includes an example of a Results section describing the outcome of the 
statistical analysis appropriate for submission to a professional journal. Each technique chapter 
includes a comparison of computer programs. You may want to vary the order in which you cover 
these chapters. 

Chapter 18 is an attempt to integrate univariate, bivariate, and multivariate statistics through 
the multivariate general linear model. The common elements underlying all the techniques are 
emphasized, rather than the differences among them. Chapter 18 is meant to pull together the 
material in the remainder of the book with a conceptual rather than pragmatic emphasis. Some 
may wish to consider this material earlier, for instance, immediately after Chapter 2. 



Chapter 2 

Learning Objectives 

2.1 Determine statistical techniques based on the type of research questions 

2.2 Determine when to use specific analytical strategies 

2.3 Use a decision tree to determine selection of statistical techniques 

2.4 Outline the organization of the technique chapters 

2.5 Summarize the primary requirements before selecting a statistical technique 

2.1 Research Questions and Associated 
Techniques 

This chapter organizes the statistical techniques in this book by major research questions. A deci­
sion tree at the end of this chapter leads you to an appropriate analysis for your data. On the basis 
of your major research question and a few characteristics of your data set, you determine which 
statistical technique(s) is appropriate. The first and the most important criterion for choosing a 
technique is the major research question to be answered by the statistical analysis. Here, the re­
search questions are categorized into degree of relationship among variables, significance of group 
differences, prediction of group membership, structure, and questions that focus on the time 
course of events. This chapter emphasizes differences in research questions answered by the differ­
ent techniques described in nontechnical terms, whereas Chapter 18 provides an integrated over­
view of the techniques with some basic equations used in the multivariate general linear model.1 

2.1.1 Degree of Relationship Among Variables 
If the major purpose of analysis is to assess the associations among two or more variables, some 
form of correlation/ regression or chi-square is appropriate. The choice among five different 
statistical techniques is made by determining the number of independent and dependent vari­
ables, the nature of the variables (continuous or discrete), and whether any of the independent 
variables (IVs) are best conceptualized as covariates.2 

1 You may find it helpful to read Chapter 18 now instead of waiting for the end. 
2 If the effects of some IVs are assessed after the effects of other IVs are statistically removed, the latter are called 
covariates. 
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